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Tableau 8. Groupe Gk associ@ ~ G 

G R6seau G k G R6seau 
1, m 3c I 3, 32 3a 

3c 
2 3a 1 3r, 3h 

2/m 3a m 3m 3a 
3c l 

222 3c 112 3m 
myzmzx2 3a I m I 6 3c 

mmm 3c 2~mm 6 3a 
4 3c 2 6/m 3c 

3a 
422,4/m 3c 4 

62m 3c 
712m 3c 2ram 

4/ mmm 3c 4ram 6ram 3a 
622 3c 

3a 
6/mmm 3c 

3a 

symmorphique TaAG. Par exemple: 

Gk P3cma2 + P3cbm2 = P3~ba2. 

3 Enfin, les groupes Giek de r6seau 7"3 et de classe 
isomorphe h G forment un groupe plus large que le 

3 pr6c6dent. Par exemple: 

3m 
3 
3 
6 
?, 

3m 

3m 
6 
32 

6ram 
62m 

faut ici envisager les couples de repr6sentations con- 
jugu6es, ou encore les groupes conjugu6s de chaque 
paire de Koptsik. 

Les groupes G°3 forment avec Ge un sous-groupe, 
les groupes Gek3 ne forment pas un sous-groupe. On a: 

3 3 
G lek Z G eo = G ek 

I I 
Glek X Gek,  : Gek+k,.  

Par exemple: si Ge = P63, le groupe est form6 de Ge, 
des groupes G3eo color6s, (P6  (3) et son conjugu6 P6(33)) 

• 3 

enfin, des trois groupes G'ek mentionn6s plus haut et 
de leurs conjugu6s. 

(b) Les groupes Gieo de classe isomorphe de G 
forment un groupe ab61ien additif dont l'unit6 est le 
groupe symmorphique TAG. Ainsi: 

P6(3 3) + P6(3 y) = p 6  (3). 

les groupes G~ek de r6seau T3 et de classe isomorphe 
/~ G forment un groupe dont l'unit6 est le groupe 

P3ccc2 + P3cmn21 = P3cca21. 
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Abstract 

A periodic lattice in E" is associated with an n-grid 
and its dual, and with a point symmetry group G. 
Given a subgroup H of G, a subspace E", m < n, of 
E", invariant under H, is chosen and a projection of 
the n-grid from E ~ to E" is defined. The translational 

and point symmetries of the projected n-grid are 
analyzed. A projection of the cubic n-grid from E" 

n I to E - based on H = S(n) yields a periodic n-grid. 
A projection of the cubic 12-grid from £t2 to E 3 based 
on H = A(5) yields a non-periodic 12-grid. This 12- 
grid is characterized by three real numbers and from 
its projection has a well defined orientation. The dual 
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to this 12-grid yields a generalization of the non- 
periodic Penrose patterns from two to three 
dimensions. 

basis of E n. We use the same symbol E n to denote 
the set of points of the Euclidean space associated 
with this vector space. 

1. Introduction 

Penrose (1979) introduced non-periodic patterns in 
E 2 in terms of two cells, de Bruijn (1981) developed 
an algebraic approach to these patterns. He intro- 
duced a pentagrid in E 2 depending on two real num- 
bers and showed that there is a one-to-one correspon- 
dence between Penrose patterns and dual graphs to 
the pentagrids, de Bruijn gave an algebraic descrip- 
tion of the orientation for the graphs. Moreover, he 
showed that the pentagrid could be considered as the 
projection of a five-dimensional cubic cell structure 
from E 5 to E 2. 

In the present paper we generalize several ideas of 
de Bruijn and study various applications. We intro- 
duce a projection of an n-grid Y in E" to an n-grid 
Y~ in E~", 1 <- m < n. For the projection we consider 
the translation group T and the point group G of the 
original n-grid. We choose a subgroup H < G and 
take the subspace E? as a representation space of H. 
Then we project the n-grid Y onto E~" and investigate 
its symmetry under translation subgroups of T and 
point subgroups of H. With the projected n-grid Yl 
in E~" we associate a directed dual graph ZI which 
gives rise to a dual space filling of Em. In contrast to 
de Bruijn, we define the orientation of Z~ through 
the projection procedure. 

As a first example we project the cubic n-grid from 
E" to £ , - t  by use of the symmetric subgroup H = 
S(n) of the hyperoctahedral point group f2(n). We 
obtain a periodic n-grid Yt and dual graph Z~ in E~ -I 
and consider in more detail the cases n = 3 and n = 4. 

As the second example we project the cubic 12-grid 
from E ~2 to E 3 by use of the icosahedral group A(5) 
considered as a subgroup of O(12). We obtain a 
12-grid Y~ in E 3, which is associated with the regular 
dodecahedron, is determined by three real numbers 
and is shown to have no translational subsymmetry. 
The dual graph Z~ yields a space filling of E 3 by two 
types of rhombohedral cells with directed edges. The 
cells coincide with the ones introduced by Mackay 
(1981) as a generalization of the Penrose pattern to 
three dimensions. 

By the projection method we establish the associ- 
ation of the three-dimensional Penrose pattern with 
the icosahedral group and introduce an algebraic 
approach to this pattern based on the dual 12-grid. 
For a different association of the icosahedral group 
to non-periodic space filling of E 3 we refer to Kramer 
(1982). 

2. Grids, cells and graphs in E" 

Let £" be the real Euclidean vector space with the 
standard inner product, and let bIb2.. ,  b, denote a 

2.1. Definition: An n-grid Y consists of n systems 
Y~ of hyperplanes 

Y ' :  {YIY. bi : ½ki, k, = + 1, ±3, ±5, . . . } ,  

i = l , 2 , . . . , n .  

For fixed i, these hyperplanes are parallel and have 
as distances the multiples of Ib~[ -I. The vectors b~ give 
a natural orientation to all systems Y~. 

2.2. Definition: The primitive translation cell of 
the n-grid Y with index system (k tk2 . . .  k~) is the 
set of points 

{yl½(k,-2)<y.b,<_½k,,i= 1 , 2 , . . . ,  n} 

Since the cells do not overlap and fill all of E n, the 
index system defines n functions k~(P) for all points 
P o f E  ~. 

2.3. Definition: Choose a fixed point of E n corre- 
sponding to the vector y and write y = y  +x. Then 
the n-grid Y referred to the point y is given by the 
n systems of hyperplanes 

yi  = {xlx. b, = ½k, - 3'. b,, k, = + 1, ±3, +5, . . .} ,  

i=  1 ,2 , . . .  n. 

2.4. Definition: The dual lattice to Y is the discrete 
set of points 

{klk--½ k i b i , ( k , k 2 . . . k , ) a c e l l i n d e x o f Y } .  

2.5. Definition: The dual graph Z to Y is a graph 
whose vertices are the points of the dual lattice and 
whose directed edges are given by connecting vertices 
k', k" which obey 

k ' - k " =  ~ 8jibi forsomej,  l<-j-< n. 
i = l  

2.6. Definition: The reciprocal basis b'hE* . . .  b* to 
the basis btb2. . ,  b, is defined by the conditions 
b*.  bj = 6 u. 

We now describe the translation symmetries of the 
n-grid Y and its dual graph. 

2.7. Definition: The translational group T is the 
group with elements 

the translation group T* is the group with elements 
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2.8. Proposition: The n-grid Y is transformed into 
itself under the translation group T, the dual graph 
Z is transformed into itself under the translation 
group T*. 

Note that the dual graph has the interpretation of 
the graph of the group T* with the directed edges 
being the n generators of T*, cf. Grossman & Magnus 
(1964). 

3. Projection of grids and graphs onto an orthogonai 
subspace 

Consider an orthogonal decomposition of the vector 
space E", 

6" = 67  + 6'~-", 67  .1_ ~2"-', 1 <- m < n. 

By the indices 1 and 2 we denote the two orthogonal 
subspaces and the projection of any vector into these 
subspaces. We choose a fixed point corresponding to 
the vector ~, and demand that it belongs to the sub- 
space k-~'. 

3.1. Definition: The projected n-grid YI in 6~' is 
the set of points 

m Y i  I = { x l x  E y i  ~ ~:l }, i = 1, 2, . . . ,  n. 

The points of Yt are characterized by the conditions 

= ~k~ - 3'. b~, X.  bi~ 

ki = +1, +3, + 5 , . . . ,  i=  1 ,2 , . . .  n. 

Note that the projection depends on the choice of 
the point corresponding to ~,. 

The projected n-grid Y~ yields a division of 6~' 
into cells according to 

{xl½ ( k , - 2 )  < x .  b,, +3' .  b,-<½k,, i=  1 , 2 , . . . ,  n}. 

Since any point P~ of E~' belongs to precisely one 
cell, the index system (k~k2. . .  k ,)  defines again n 
functions k~(P~) for all points P~ of 6~'. Because of 
the projection from 6" to 6~, the range of these 
functions is smaller than the one of the functions 
mentioned after Definition 2.2. 

3.2. Definition: The dual lattice to the projected 
grid Y~ is the discrete set of points 

{k[k=½ ~i=lkibil,(k, k 2 . . . k , ) a c e l l i n d e x o f Y i } .  

3.3. Definition: The dual graph Z~ to YI is the 
graph whose vertices are the points of the dual lattice 
and whose directed edges are given by connecting 
vertices k', k" which obey 

k ' - k " =  ~ ~3jibil forsomej,  l < j ~ n .  
i = l  

Any finite cell of Y~ has at least m +I  hyperplanar 
faces. At any face, the index of the neighbouring cells 

jumps by +2 in a single index. The edges of Z~ 
correspond to the cell faces of Y~, and hence it follows 
that at least m + 1 directed edges meet at a vertex of 
the dual graph Z,. 

An edge of a cell of Y~ is part of an intersection 
of m hyperplanes and joins 2m faces of cells. The 
2m edges of Z~ belonging to this edge form a closed 
subgraph and define a face of a cell structure belong- 
ing to Z~. The vertices of Y, correspond to the cells 
of Z~, and one sees that the graph Z~ determines a 
dual space filling of Era. 

4. Translational symmetry under projection 

We now inquire about the translational symmetry of 
Y and Z under projection. We restrict the attention 
to those translational symmetries of Y~ and Z~ which 
are subsymmetries of the groups T and T*, respec- 
tively. This excludes accidental translational sym- 
metries of Yt and Z~ which have no counterpart in 6". 

4.1. Proposition: The projected n-grid Y~ has a 
translational subsymmetry if and only if there exists 
an element t of T such that 

i = l  i = l  

Proof: We rewrite the equations for the projected 
n-grid Y~ in the equivalent form 

xl . bi = ½ki - v  . K. 

Clearly, the projected n-grid is transformed into itself 
by any transformation x, ~x~ +t, t~ T. If t2 =0  then 
t = tj and hence the transformation is a translation 
6~' ~ 6~', hence a subsymmetry. Conversely, assume 
that there exists a vector v~ c 6~', v~ ~ 0 such that 

x l . b i = l k i - ~ l . b i ,  i = l , 2 , . . . , n ,  

implies 
I p (xt+vl).bi=~ki-,y.bi, i= 1 ,2 , . . . ,n .  

I t Then it follows that v~. bi = ~ ( k i -  ki) = )ti = integer. 
The vector 

t = ~ Aib* 
i = l  

clearly is an element of T and transforms Yt into 
itself. If we require v~ ~ T this implies vt = t = t~ and 
hence t2 = 0, tt ~ 0. 

4.2. Proposition: If the projected n-grid Y~ has the 
translational subsymmetry group Tt < T, 

 b*l 
then the dual graph Zj has the translational symmetry 
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group T* < T*, 

Note that the existence of a translational subsym- 
metry is independent of the choice of the vector T- 

5. Point symmetry and projection 

Let G denote the point symmetry group for the n-grid 
Y in E" and consider a subgroup H < G. The action 
of G on £" yields an n-dimensional orthogonal rep- 
resentation G ~ D which under subduction to H will 
in general be reducible. Assume that this representa- 
tion of H has a direct sum decomposition 

H:  D ~  Di +D2 

into two orthogonal representations D~ and /)2 of 
dimensions m and n - m, respectively. Then the corre- 
sponding orthogonal subspaces ~-~' and £~'-" may be 
used to define the projection of the n-grid Y to the 
n-grid Y~ in £~'. By this construction, the subgroup 
H of G acts within ~-~' and allows one to study the 
point symmetry group of the projected n-grid and its 
dual graph. Note that for a general choice of the point 
corresponding to ~, the projected n-grid Y~ does not 
have the point symmetry group H. If~/is decomposed 
a s  

~/= "~'l +'Y2, 

a change of ~/j corresponds to a translational shift of 
the n-grid Y~ and hence does not change its symmetry. 
It follows that the point symmetry group of Y~ and 
of Z~ depends on the vector ~'2. We shall consider 
this result in the explicit constructions of §§ 6 and 7. 

Strictly speaking, one should distinguish between 
the point symmetry groups of the n-grid and of the 
oriented n-grid. This distinction will be clear for the 
following examples. 

6. Projection of the cubic n-grid from E" to f "-t based 
on the symmetric group S(n) 

The cubic n-grid Y in £" is defined through the 
orthonormal basis 

b,: b,. bj = 8o, i , j =  1 , 2 , . . . ,  n. 

The hyperplanes yi divide ~-" into cubic cells. The 
dual lattice is again cubic, the dual graph Z has the 
directed edges of the cubes as its elements. The 
reciprocal basis b~ coincides with b*, and the transla- 
tion groups T* and T are isomorphic. 

The point group G of the cubic n-grid is the hyper- 
octahedral group O ( n ) .  This group contains the sub- 
group S ( n )  of all permutations of  the n basis vectors 
along with n reflections of the type b i ~ - b i .  We 
choose the subgroup H = S ( n )  of O(n)  for the projec- 
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tion. The representation D of S(n) has the decompo- 
sition 

S( n)" D -~ UT-'  + D~', 

where DI corresponds to the Young diagram [n - 11] 
and D2 corresponds to the Young diagram [n], respec- 
tively. The projection of the basis into the correspond- 
ing subspaces E] '-1 and £~ is easily found to be 

b,, = b , -  1 /._, b ~ , -  b,2 = -  bJ. 
n / ~ j = l  

j = l  

The projected basis vectors in ~-~,-i have the scalar 
products 

b,~ . bjl = 6ij - I /  n, 

and from this one finds 

Ib,,I = [(n - 1)/n] '12, 

cos(bil, b j l ) = - ( n - 1 )  -I, i # j .  

To find the translational subsymmetry group T~ we 
apply proposition 4.1, 

i=1 j = l  

The n-grid 111 depends on the numbers ~,. bi. We 
decompose T as 

~/= ~/i +~'2. 

By a translational shift in ~-~'-~ we can change ~/~ 
without changing the intrinsic structure of YI. Putting 
for example ~/~ = 0, we get 

'Y" b i  = ~/2" b;2 = y 

so that the n-grid Y~ is determined by a single number 
Y. Consider now the vertices of the n-grid Y~, that 
is, the intersection points of the n systems of hyper- 
planes. We call an intersection point regular if at most 
n -  l hyperplanes intersect, otherwise singular. 

6.1. Proposition: The  projected n-grid Yf in E~ '-~ 
is determined by a single real number y. All vertices 

-of Y, are singular for the discrete values 

- ~0, +2, ± 4 , . . .  for n even 
y = n  1½k, k = [ ± l , ± 3 , + 5 , . . . f o r n o d d  ' 

otherwise all vertices are regular. 

Proof: Without loss of generality we may study an 
intersection point belonging to the systems 
Y J I Y ~ . . .  Y'~-~ of hyperplanes and fixed values 
klk2 .  . . kn-i ,  

x.bil=½ki-y, i = l , 2 , . . . , n - 1 .  
n 

Using ~j=l bjl = 0 this implies 

n - I  

x . b , , , = - ½  ~ k j+ (n -1 ) ' y .  
j = !  
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From the values taken by the numbers ki, the point 
lies in a hyperplane of the system Y~' with index k, if 

ny=½k, 

"xT. I j o, +2, + 4 , . . .  for n even 
k= l.~ k;+k,,= | 

;=~ I+1, +3, + 5 , . . .  for n odd. 

Conversely, assume that 7 has a value as stated in 
the proposition. Then for any intersection point of 
the first n -  1 systems of hyperplanes one gets 

n - - |  

x. b,,, =-½ Y~ k; +½k- y 
j=l 

n--I 
I t ! = ~ k , - T ,  k , , = -  Y. k j + k = + l , + 3 , . . .  

j = l  

and hence all intersection points are singular. 

Example 1: Projection of the cubic 3-grid from ~3 
to £2. In this case the three projected vectors bil have 
the properties 

I Ib,~1=(2/3) ' /2,  cos(b,,,bj,)=-~ fori~j. 
The translation subgroup is 

The point subgroup of YI is the group C3v isomorphic 
to S(3). In Figs. 1 and 2 we show the 3-grid Y~ for 
the regular and the singular cases. In the singular 
case we have 

1½k, k +1, +3, ~/=.~ = . . . .  

The vertices of Y~ determine the cells for the dual 

graph Zl. For regular vertices, the cells of Zi are of 
rhombus shape with a fixed orientation shown in 
Fig. 3. For singular vertices of YI, the cells of ZI are 
regular hexagons with a definite orientation, see 
Fig. 4. 

Example 2: Projection of the cubic 4-grid from E 4 
to E 3. The projected vectors in k -3 have the properties 

Ib,,1=(3/4) t/2, cos(b,~,bj,)=-|]3 f0ri;~j, 
they are perpendicular to the faces of the regular 
tetrahedron. The translation group Tt has the general 
form given above, the point symmetry group of Y~ is 
the tetrahedral group Ta isomorphic to $(4). We now 
describe the structure of Y~ and Z~ and put in brackets 
the generalization of the description to the general 
case. 

An edge of a cell of Y~ belongs to the intersection 
of four [ 2 ( n - 2 ) ]  faces of cells. A regular vertex of 
Y, belongs to six [ 2 ( n - 1 ) ]  edges, a singular vertex 
of Yt belongs to 12 [n(n - 1)] edges. The dual struc- 
ture of Z~ has the following features: To a face of a 
cell of Y~ there corresponds a directed vertex of Z~. 
The four [ 2 ( n - 2 ) ]  faces of Y~ meeting at an edge of 
Y~ give rise to a closed connected part of Z~ which 
we call a (hyper-)rhombus. This (hyper-)rhombus lies 
in the (hyper-)plane perpendicular to the edge of Y~ 
and contains four [2(n - 2 ) ]  vectors bil which appear 
twice. To a vertex of Y~ there corresponds a cell Zi. 
For a regular vertex, the cell of Z~ has six [2(n - 1)] 
(hyper-)rhombus faces and forms an oriented 
(hyper-)rhombohedron. For a singular vertex of Y~, 
the cell of Zj has 12 In (n - 1 )] (hyper-)rhombus faces. 

We do not discuss the cell structure of Y~ which 
corresponds to the vertex structure of Zt. 

Fig. I. Projection of the cubic 3-grid from/23 to/22 in the regular 
case. 

,/ \ /  

Fig. 2. Projection of the cubic 3-grid from E 3 to/22 in the singular 
case. 

Fig. 3. The dual directed graph and space filling for the regular 
projected 3-grid. 

rYYYYY) 

Fig. 4. The dual directed graph and space filling for the singular 
projected 3-grid. 
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Table 1. Generators g2 and gs of order 2 and 5 for 
the icosahedral group A(5) taken as a subgroup of  S(12) 

[ ;  2 3 4 5 6 7 8 9 10 II 12] 

g2: 6 1 9 8 2 I1 5 4 12 7 10 

[ ; 2 3 4 5 6 7  8 9  1 0 1 1  12] 

8 :  3 4 5 I 6 7 12 8 9 10 11 

Table 2. Representation D~, and D2, of  A(5) in the 
bases el, i = 1 , 2 , . . . , 6 ,  and c~+6, i = 1 , 2 , . . . , 6 ,  

respectively, for the generators g2 and g5 

T h e  u p p e r  sign appl ies  to D~,, the lower  sign to Dz,. 

g2: 6 1 :1:4 a:5 

g~: 3 4 5 I 

7. Projection of the cubic 12-grid from E tz to E 3 based 
on the icosahedral group A(5) 

The cubic 12-grid in £ 12 has the point symmetry group 
~(12) with the subgroup S(12). Consider the sub- 
group C(5) of A(5), the cyclic group. The group A(5) 
acts on the 12 cosets A ( 5 ) / C ( 5 )  as a permutation 
group of 12 objects and therefore yields an embedding 
A(5) < S(12) </2(12). If the icosahedral rotations of 
the regular dodecahedron are interpreted as permuta- 
tions of the twelve faces, we obtain the explicit form 
of this embedding. The enumeration of the dodeca- 
hedral faces is taken from Kramer (1982) and leads 
to Table 1. 

The representation D of S(12) in ~_-12 is given by 
the standard permutation matrices. For the subduc- 
tion to a representation of A(5) we note that the 
generators g2 and g5 have been chosen with the fol- 
lowing property: l f p  ~ A(5) sends i into p(i)  =j, then 
p ( 1 3 - i ) = 1 3 - j .  Now we pass from the basis 
bib2.., b. to the new basis 

c, = (1 /2) ' /2(b , -  bl3-,) 
c,+6 = (1/2)1/2(b; +b,3_,) i=  1 , 2 , . . . , 6 .  

In this new basis, the representation D subduced to 
A(5) decomposes into two six-dimensional rep- 
resentations Di, and D2, specified in Table 2. 

For the irreducible representations of A(5) we use 
a notation based on the symmetric group S(5) and 
its subduction to A(5), Table 3. The representations 
may be identified by their characters, Table 4. 

By standard methods one finds the decompositions 
of Di, and D2, under A(5): 

Dl,= D[3111 ' + D[311V 

D 7  = D [32] + D [5]. 

By character projection technique one constructs the 
explicit reduction of the representation Di,. 

Table 3. Subduction of  irreducible representations frorn 
S(5) to A(5) 

S(5) Dimension A(5) Dimension 
[5] i [5] l 

[41] 4 [41] 4 
[2111] 4 [2111]~[41] 
[32] 5 [32] 5 
[221] 5 [221]~[32] 
[31 I] 6 [31 I]' +[311] '° 

[311] ~ 3 
[311] ̀0 3 

Table 4. Characters X for irreducible representations 
o f  A(5) 

Class representatives are the identity element e, powers of the 
generators g2 and gs, and the elements of order 3 derived from 
g3 = g295. The number ~b is ~b = (! +5u2)/2. 

Number 
Class of 

representative elements Irreducible representation 
[5] [41] [32] [311]' [311] ~ 

e I 1 4 5 3 3 
g~ 15 1 0 I - I  -1 
g~ g2 20 l I - 1 0 0 

-1 
g~,g~ 12 1 - I  0 & I -d~ 

2 3 g5 ,gs 12 1 - I  0 I -a5  

7.1. Proposition: In the new basis of ~-6, for D., 
defined by 

6 

d~ = Y, rnocj, i = 1 , 2 , . . . , 6  
j = l  

and the matrix m given by 
m I 2 3 

I ( I / 1 0 )  1/2 ( I / 1 0 )  1/2 ( I / lO)  ~/2 
2 (2/5) I/2 (2/5)1/2c (2/5) t /2c ' 

3 0 - (2 /5)~/"s  - (2/5)L/2s  ' 
4 - ( I / 1 0 )  I/2 - ( I / 1 0 )  I /a  - ( I / 1 0 )  j/2 
5 (2/5) ~/2 (2/5)~/2c ' (2/5)~/2c 
6 0 - (2/5)~/2s  ' (2/5)~'2s 

4 5 6 

(l/10) I/2 (I/10) j/2 (1/2) I/2 
(2/5)1/2c ' (2/5)1/2c 0 
(2/5)1/2s ' (2/5) ' /2s  0 

-(I/10) 1/2 -(I/10) 112 (I/2) 1/2 
(2/5)1/2c (2/5)1/2c ' 0 

-(2/5)~/2s (2/5)~/2s ' 0 

where c = cos 27r/5, s = sin 27r/5, c '=  cos 47r/5, s '=  
sin 4~'/5, the representation DI, is explicity reduced 
a s  

[ D I  0 ] - I ,  : D  [31 ' = D [ 3 I I ] ~  
D t, = m 0 De m DI II, D2 

Now we project in a first step the cubic 12-grid from 
~-.2 to the subspace £6, determined by the reducible 
representation Di. of A(5). Inverting the relation 
between the bases b~ and c~ introduced above we get 

bi, l = (1/2)1/2ci i=  1 ,2 , . . .  ,6 

bt3-~.l=--(l/2)l/2c~ i = 1 , 2 , . . . , 6  

and the projected 12-grid in ~:6 has the equations 

x . bi, l = ½ki-'y . bi, i=  1 , 2 , . . . , 6 ,  

X .  b l3 - i ,1  = ½ k l 3 - i - % t  . b l 3 - i ,  i = 1 ,2 , . . .  ,6. 

For fixed i, the systems YI and Yll3-i of hyperplanes 
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in E 6, are parallel but have opposite orientation. Now 
we choose in E 6, 

~'2,. bi = ~'2'- bl3-i = 1. 

This choice of ~/ allows one to describe the 12-grid 
in E 6, by the set of equations 

X.  ei =-1421/27"i- ~/ l ' .  gi, "/'i = +1, +3, +5, . . . ,  

i =  1 , 2 , . . . , 6 ,  

where all hyperplanes for ~'; = 1 , -3 ,  5 , . . .  have the 
orientation determined by c~ and for r~ = - 1,3, - 5 , . . .  
have the orientation determined by -ei. The 12-grid 
in E 6, becomes a cubic 6-grid with alternating orienta- 
tion of parallel hyperplanes. 

In the second step we project this modified 6-grid 
from E 6, to £3, the representation space of the irre- 
ducible representation D [311]' of A(5). Using the 
orthogonal matrix m one finds, for the projections of 
the vectors c~, 

3 6 

el, = ~ mj, dj c,2 = ~, mj, dj 
j = l  j = 4  

with 

Ic,,l = Ic,21 = ( 1 / 2 )  I/2. 

The equations for the projected 12-grid Y~ in E 3 
become 

x .2 l /2c i~=½r~-%,  r ~ = + 1 , + 3 , + 5 , . . .  

3,~=21/27~,.c~, i =  1 , 2 , . . . , 6 .  

7.2. Proposition: The 12-grid of E ~2 under projec- 
tion to the irreducible representation space E 3 of the 
r ep resen ta t ion  D [311]' becomes a hexagrid whose 
planes are perpendicular to the twelve faces of the 
regular dodecahedron. The distance of consecutive 
parallel planes is 1, and these planes have alternating 
orientation. 

Proof: The normalized vectors (2)1/2c~ are 
obtained from the six columns of the matrix m = (mu) 
for i = 1, 2, 3. These vectors determine the directions 
perpendicular to the faces of the regular dodeca- 
hedron. The orientation of the planes alternates 
according to the value of r~. This property reflects the 
existence of a 12-grid rather than a 6-grid. 

7.3. Proposition: The projected 12-grid in E~ has 
no translational subsymmetry of the translation group 
for the cubic 12-grid in E ~2. 

Proof: Firstly, we consider the projection from E ~2 
to E6,. The translation subgroup is easily found to be 

Tl ,=  t t =  Y. t i b i l  , t j + t l 3 _ j = O  , j =  1 , 2 , . . . , 6  
i=1  

Clearly this translation subgroup maps the oriented 
hyperplanes of the 12-grid in E 6, into one another. 
Now consider the projection from £ 6, to E 3. From 
proposition 3.1 we require a translation vector such 
that 

6 6 
tiC,2 =0 ,  E (ti) 2>0.  

i = l  i = l  

In terms of the matrix m, this condition becomes 

6 

timji ='0, j = 4, 5, 6. 
i=1  

For j = 4, the equation reads 

5 

(10 )  - I /2  ~.. t i - - ( 2 ) - 1 / 2 1 6 = 0  , 
i = l  

which for integer numbers t~ implies 

5 

t i = 0 ,  / 6 = 0 .  
i=1  

The operations of A(5) allow one to replace the vector 
c62 by any other vector cj2,j = 1, 2 , . . . ,  5. Therefore, 
all the integers t~ must be zero, and hence there is no 
translation subgroup. 

We turn to a description of the projected 12-grid 
Y~ and its dual Zl. An edge of Y~ is the intersection 
of two planes whose normal vectors form an angle ~o 
with cos ~o = +(1/5)  ~/2. A regular vertex of YI is the 
intersection of three planes. There are two types of 
triples of planes: in the first case we may choose three 
normal vectors with the same angle ~o, cos~o= 
(1/5) ~/2, in the second case we may choose three 
norrflal vectors with the same angle ~o', cos ~o'= 
- ( 1 / 5 )  ~/2. The edges of Y~ determine the faces of ZI. 
The face of ZI is a rhombus with the two angles 
characterized by cos ~o = +(1/  5) ~/2. There are two 
possible orientations of the edges, see Fig. 5. 

The cell of Z~ dual to the regular vertices of Y~ are 
rhombohedra.  Their edges at the vertices with three- 
fold symmetry form the two triples of vectors 
described above. The direction of parallel edges is 
always the same, otherwise all combinations of direc- 
tions are possible. The two types of rhombohedra are 

Fig. 5. The two possible orientations of the edges for one of the 
rhombohedra  from Fig. 6. 
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shown in Fig. 6. The regular graph Zz describes a 
space filling of E 3 by the two types of rhombohedra.  
This space filling has no translational subsymmetry 
from the cubic lattice in E ~2 

Finally, we note that a translation shift in E 3 does 
not change YI or Z~ in their intrinsic structure. It 
follows that the 12-grid Yt and its dual Zt are deter- 
mined by three real numbers. 

Fig. 6. Projection of the cubic 12-grid from E ~z to E 3. The cells of 
the dual space filling are two different types of rhombohedra. 

As mentioned before, the two types of rhombo- 
hedra were introduced by Mackay (1981) as the cells 
for a generalization of the patterns introduced by 
Penrose (1979) from two to three dimensions. What 
we believe is new in the present approach is the 
projection from E ~2 to  E 3, the clear association with 
the icosahedral group A(5), the introduction of the 
12-grid and hexagrid in E 3, and the treatment of the 
orientation for the grid and its dual. 

The present projection method opens the way 
towards the complete geometric analysis and classifi- 
cation of the hexagrids and their duals. 
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Abstract 
Scattering factors for outer shells of the first- and 
second-row series of atoms have been obtained by 
expansions with Jacobi functions. Both canonical and 
density-localized shell form factors have been 
studied. For K refinements, both first and second 
derivatives are computed by analytical methods. 
Density-localized shell distributions differ from 
canonical shell distributions within a small sphere 
(<0.5 A) about the nucleus. Shell population and K 
refinements on uracil at the monopole level give 
virtually identical results with canonical and 
density-localized form factors. 

Introduction 
In multipole analyses of electron density distributions 
from measured X-ray structure factors, the contrac- 

* Present address: Department of Chemistry, Carnegie-Mellon 
University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA 

tion •: expansion of the atoms due to chemical bond- 
ing and redistribution of charge is often considered. 
For the monopole this can be partly achieved by 
keeping the density functions of the shells of a spheri- 
cally averaged Hartree-Fock atom fixed, but with 
variable populations in the respective shells. 
Moreover, in K refinements (Coppens, Guru Row, 
Stevens, Becker & Yang, 1979) the outermost shell 
of each atom can be contracted or expanded by 
rescaling K (4Ir sin 0/A) as K/K, with K as a variable. 
For K > l the shell density is contracted and for K < l 
it is expanded. The results of shell populations and 
K scaling may depend on the partitioning of the IAM 
(independent atom model) density into shells. The 
usual practice is to take atomic shell functions based 
on canonical Hartree-Fock atomic orbitals. In this 
case the valence-shell density on the nucleus is non- 
zero. As an example, for N(4S) the valence density 
is 64-4e ,~  3 compared to the core density of 
1325.5 3 A 3 o n  the nucleus. One can seek a unitary 
transformation of the l s and 2s canonical orbitals 
that minimizes the overlap of the ( l s ' )  2 and (2S')  2 
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